Speech Enhancement Modeling Towards Robust Speech Recognition System

نویسندگان

  • Urmila Shrawankar
  • Vilas M. Thakare
چکیده

For about four decades human beings have been dreaming of an intelligent machine which can master the natural speech. In its simplest form, this machine should consist of two subsystems, namely automatic speech recognition (ASR) and speech understanding (SU). The goal of ASR is to transcribe natural speech while SU is to understand the meaning of the transcription. Recognizing and understanding a spoken sentence is obviously a knowledge-intensive process, which must take into account all variable information about the speech communication process, from acoustics to semantics and pragmatics. While developing an Automatic Speech Recognition System, it is observed that some adverse conditions degrade the performance of the Speech Recognition System. In this contribution, speech enhancement system is introduced for enhancing speech signals corrupted by additive noise and improving the performance of Automatic Speech Recognizers in noisy conditions. Automatic speech recognition experiments show that replacing noisy speech signals by the corresponding enhanced speech signals leads to an improvement in the recognition accuracies. The amount of improvement varies with the type of the corrupting noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Improved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition

Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Synergy of Acoustic-phonetics and Auditory Modeling towards Robust Speech Recognition

Title of dissertation: SYNERGY OF ACOUSTIC-PHONETICS AND AUDITORY MODELING TOWARDS ROBUST SPEECH RECOGNITION Om D. Deshmukh, Doctor of Philosophy, 2006 Dissertation directed by: Dr. Carol Y. Espy-Wilson Department of Electrical and Computer Engineering The problem addressed in this work is that of enhancing speech signals corrupted by additive noise and improving the performance of automatic sp...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1305.1426  شماره 

صفحات  -

تاریخ انتشار 2008